
The art framework

C Green, J Kowalkowski, M Paterno, M Fischler, L Garren and Q Lu

Abstract. Future “Intensity Frontier” experiments at Fermilab are likely to be conducted
by smaller collaborations, with fewer scientists, than is the case for recent “Energy Frontier”
experiments. art is a C++ event-processing framework designed with the needs of such
experiments in mind. An evolution from the framework of the CMS experiment, art was designed
and implemented to be usable by multiple experiments without imposing undue maintenance
effort requirements on either the art developers or experiments using it. We describe the key
requirements and features of art and the rationale behind evolutionary changes, additions and
simplifications with respect to the CMS framework. In addition, our package distribution system
and our collaborative model with respect to the multiple experiments using art helps keep
the maintenance burden low. We also describe in-progress and future enhancements to the
framework, including strategies we are using to allow multi-threaded use of the art framework
in today’s multi- and many-core environments.

1. Introduction
art[1] is an event-processing framework . In the context of the experiments using art, an event is
all the relevant data describing what happened in a particular time period of interest. In the
case of a collider experiment, this is one beam crossing (which may represent multiple particle
collisions). For Intensity Frontier experiments, the definition of the event is somewhat less
obvious. Each experiment that uses art defines its appropriate period of interest.

The authors have been involved with the design and implementation of event-processing
frameworks for several experiments, including DØ, BTeV, CMS and MiniBooNE. Although
many of these experiments’ framework requirements were substantially similar, they shared little
development effort, and even less code. This resulted in significant duplication of effort. The art
framework project is intended to avoid such duplication of effort for the experiments planned,
and under consideration, at Fermilab.

The art framework began as an evolution of the framework of the CMS experiment[2], and has
since been substantially adapted for the needs of the Intensity Frontier experiments. Trade-offs
have been made to simplify the code in order for it to be maintainable and usable by much
smaller groups. The current users of art include Mu2e, NOνA, g-2, and LArSoft (ArgoNeuT,
µBooNE, and LBNE). Its use is being considered by other groups.

Because of the increasing importance of multi-core and many-core architectures, current
development plans center around the migration of art to support parallel processing of
independent events as well as to permit parallel processing within events.

2. Requirements
There are several key requirements that drove the overall design and philosophy of art and
its precursor, the CMS framework. The choice of programming language, for example, was

an experimental requirement. Several of the developers have been involved in the past with
experiments that required the framework allow domain experts to write analysis code in C++ or
Fortran, but that was not the case for Intensity Frontier experiments. The modular nature of
the framework is a consequence of the need to be able to handle substantially different categories
of task (e.g., simulation, production reconstruction or user analysis) without recompilation or
undue duplication of code or infrastructure. The nature of HEP data to be organized into
time-contiguous events and groups thereof (subrun, run) during data acquisition drives a similar
philosophy with respect to the organization of the framework. Conversely, the need for certain
information to be accessible across these boundaries leads to the concept of a service, to be
explained below.

One major requirement made as a result of missteps in the past is that of reproducibility, which
in this case can be refined into a need to understand how a particular result was obtained and
the ability to marshal the same input data and processing steps to obtain the same result when
required1. This leads to secondary requirements on configuration, metadata storage, inter-module
communication, temporary and persistent data structures and (to some extent) error handling
which will be elucidated in section 3.

It was felt by the initial client experiments of art that the use of a general-purpose language
such as Python or Tcl to specify configuration represented more flexibility than was necessary,
and thus complication that was not needed. Non-expert users likely would require more training
and support to find and fix problems. Additionally, allowing too much flexibility potentially
could compromise the requirement of reproducibility. This requirement drove the creation of a
domain-specific language FHiCL[3] to handle the representation of hierarchical configurations
which has found use outside art, C++ and HEP.

Another requirement is that the framework be capable of data output in a form that can be
read into ROOT[4] in a manner convenient for end-user analysis and graphical representation.
art must also be usable as an external product in order to avoid constraining an experiment to
use a particular build system. Other, more specific requirements from experiments in the form of
feature requests are discussed in section 3.

3. Architecture and Key Features.
An art program reads a sequence of events from some user-specified input source, invokes some
number of user-specified modules to perform reconstruction, analysis, simulation, or event-filtering
tasks, and may then write out the results to one or more files.

A module is a configurable unit of (usually) user-written code, with characteristics and
entry points defined by its inheritance from one of the classes InputModule2, OutputModule,
Producer, Filter or Analyzer. The latter three are the module types used to implement
the experiments algorithms.

A service is a configurable utility class registered with the framework whose methods may be
accessed from modules via a ServiceHandle. It registers optionally one or more callbacks with
an ActivityRegistry to enable behavior to be triggered at various points in the application
workflow. The service system controls the time of creation and destruction of service objects, as
well as assuring that the correct number of service objects are available.

Both modules and services are examples of plug-ins , which means they are classes that reside in
dynamically-loaded libraries which are made available to a program only when the configuration
file for that program names them. A simple naming scheme for the libraries in which these
classes are found is used to allow the framework to identify which libraries need to be loaded for
each program execution.

1 As long as the same computing hardware and operating system is available, bit-wise reproducibility should be
possible.
2 All art classes are defined in the namespace art; we omit the namespace qualification in this paper for brevity.

The flow control of an art application is managed by a state machine, the EventProcessor.
This handles initialization of the main application and the invocation of service callbacks and of
the various stages of each module at the appropriate time.

The configuration of the application, including global behavior, the modules and services
to be invoked and their particular configurations, and the order of execution of modules is
specified using the FHiCL language. This is a simple language for describing configuration
data: it describes hierarchical data structures and provides facilities to ensure that parts of
such structures that are intended to be identical are identical. It also allows users to define a
configuration that differs in specific ways from an experiment-provided “default” configuration.
The hierarchical nature of configuration language allows the partitioning of configuration data
with different purposes. An example snippet of FHiCL code is shown in figure 1.

#include "more_prolog.fcl"
BEGIN_PROLOG
stashed_parameter: true # Save this for later
END_PROLOG

process_name: RECO

source:
{

module_type: RootInput
fileNames: ["f1.root", "f2.root"]

}

scheduler.services: { @local::default_services }

physics.producers:
{

trk1:
{

module_type: JetFinderA
cone_size: 0.2

}
}
...

Figure 1. An example of FHiCL configuration code.

Modules communicate with each other by way of products, which should be simple concrete
classes (or collections thereof) for which a ROOT dictionary may be created. If persistency is
required (recommended for reproducibility) the product must additionally avoid use of pointers
or pointer-containing classes3. A module will declare a product to be placed into one of three
entities of well-defined lifetime: the event , the subrun or the run upon construction. At the
appropriate time, the module will place (or not) said object into the correct containing entity.
Once a product has been placed into the event4, it should be considered immutable: subsequent
modules have only const access to products they retrieve. Derived or edited data must be

3 Certain exceptions are permitted, such as std::vector which is serialized specifically by ROOT.
4 Products can also be placed into a subrun or run.

saved as new product instances. One easily-missed but important attribute of this system is that
products are separated from the algorithms that produce or consume them: algorithm code does
not address the mechanics of persistency.

Products or objects within them may refer to other objects in a persistent collection by way
of the Ptr class template. Alternatively, a bi-directional association may be created between
two objects in collections already in the event using the Assns class template.

Exception handling is configurable: art or experiment-authored code throws exceptions which
define the category of error that has been encountered. This categorization is distinct from the
specification of the handling action. There is no “fatal exception”; rather, the framework can be
configured so that the reaction to a given exception is to shut the program down (gracefully), or
to continue with the next event, or one of several other choices of handling action.

Product mixing is possible: the ability to combine many instances of a product from a
secondary input stream into the current event (e.g. to handle “pile-up” or cosmic rays) is
supported by a module class template, MixFilter. Users implement the “detail” class that
describes how multiple instances of one or more product types should be combined into single
instances of each product. The class template takes care of the mechanics of obtaining the data
from auxiliary files and for writing out the merged product.

In addition to the persisted data products, the configuration used is saved in a SQLite[5]
relational database, which is embedded in the art output file. In addition, product provenance
and other metadata are saved to enable experiments to track the steps that went into producing
each data product.

A class template for writing input sources is provided (ReaderSource) which allows
experiments to craft inputs that read specially formatted files (e.g. DAQ output) without
needing to understand the complexities of how the framework interacts with the input system;
the experiment’s code is only responsible for delivering and populating new events, subruns, and
runs as the input is read.

The art framework relies upon a number of external products (e.g., the Boost C++ library[6]
and ROOT); these products are built by the art team and deployed through a simplified UPS[7]
package deployment system. The art framework is itself deployed via the same mechanism, and
is treated by the experiments using it as just another external product upon which their code
relies.

4. Collaborative development and deployment
The “art suite” is a collection of software packages, currently five in number, developed and
maintained by the Scientific Software Infrastructure group of the Scientific Computing Division
at Fermilab. The source code for each of the component packages resides in its own git repository
linked to a Redmine project hosted by Fermilab’s central facility for that purpose. In this way
repository browsing, a release roadmap, wiki documentation and issue tracking are made available
with zero developer effort beyond the actual authorship of the written material provided.

A small team of developers supports and extends art. The development team conducts
weekly “stakeholder” meetings to obtain input on requirements, issues and priorities from
experimental representatives and other interested individuals. In addition to the issue section of
art’s Redmine page, mailing lists for community support and for developer advice are available
for experimenters to use.

In contrast to previous frameworks, experiments are not constrained to use a particular build
or source control system in order to use art. The art suite packages are developed, built and
packaged using cetbuildtools[8], a CMake[9]-based build system produced by the authors of
art. Experiments using art however, use a variety of build systems including SoftRelTools[10],
SCons[11], and cetbuildtools.

Binary package releases are made for a small number of combinations of compiler, architecture,

and optimization level. The packages are delivered in the form of tarball collections of “relocatable
UPS”5 packages. The original and venerable Fermilab UPS package system centers around a
products area and a database directory for version, architecture, and variant information. A
user would set up a particular version and variant of a product and dependencies would be
set up automatically as required. This enables us to develop art naturally as a collection of
interdependent packages while allowing experiments to use it with a single command. When
discussing the requirements of such a deployment system however, our user community found the
product declaration procedure and syntax cumbersome and error-prone. The ability for UPS to
operate without a central database area was added at our request, with the version information
being provided with the tarball for each package thereby rendering the declaration procedure
unnecessary.

The UPS delivery system allows us to decouple the repository and build system used in the
development of art from the development systems used by the experiments that reply upon art.
This decoupling allows development of art to proceed at its own pace, which may be different
from that of any experiment that uses it, as well as allowing each experiment using art to move
to new released versions at its own pace, independently of the other experiments. The ability of
each experiment to dictate its own schedule for software releases is a critical requirement for all
the experiments that use art.

External dependencies such as Boost, ROOT, etc., are built by a member of our group to
experimental requirements (for example, three different configurations of ROOT are built) in
configurations compatible with those of the art suite and distributed as one or more “externals”
tarballs for expansion into an experiment’s UPS directory.

Each experiment writes its own modules, services, data product types and auxiliary code and
incorporates them into the execution of an art program as shared libraries, built using their
own build system and loaded by the art executable as plugins. Experiments can write their
own executable to invoke the art framework if they wish to customize command-line options or
alter certain default behaviors; we distribute as part of art the C++ main function used by our
current user community.

In addition to implementing various requested features into art directly, the development
team offer design and implementation advice and code review services to the experiments when
requested. Also, major updates to dependencies (e.g., ROOT, compilers) are coordinated with
experiments, and migration assistance is provided as appropriate.

5. Future directions
We categorize ongoing and future work on art as evolutionary enhancements, new features or
major work. In the first category we include several small development efforts.

• Use of the in-file SQLite database will be expanded to include all existing metadata.

• The concepts of event , subrun and run will be unified, allowing greater flexibility in use of
inter-product references.

• The processing intervals will be enhanced to have more intuitive behavior across file
boundaries.

• Internal use of Reflex will be excised to prepare for the release of ROOT 6.0 / Cling.

• ISO C++2011 compilation will be enabled across the art suite (already the case in
development builds) and experiments will migrate as and when they are ready.

Expected new features will include the ability to store experiment-specified metadata in
the in-file SQLite database and an event-display toolkit providing a well-defined graphical
toolkit-agnostic interface to the framework. In addition, we plan to generalize and expand

5 Also sometimes called “UPS Lite”.

cetbuildtools and our package delivery system for use by experiments as an alternative to
supporting their own build system.

In the category of major work, art will be upgraded to be able to process multiple events
simultaneously in the same executable and allow for algorithm parallelization within modules.
Moving to purely on demand module execution, in which the order of module reconstruction
module execution is determined by the data dependencies implicit in the code, will further
allow multiple modules to process the same event simultaneously. Developing a viable scheme
for multi-thread and/or multi-process I/O should is also important in the context of utilizing
maximally the multi- and many-core attributes of modern server systems.

Last but not least, we are prototyping multi-process DAQ event-building and triggering
using art (artdaq[12]) for the DarkSide-50, Mu2e, µBooNE and NOνA experiments with very
promising results so far[12, 13].

6. Summary
The art suite has been in use by several Intensity Frontier experiments since about January
of 2011 and at time of writing is used by six experiments as their general purpose offline
event processing framework. It is also under consideration by two more experiments. The art
development team is able to develop and maintain the suite with an average effort expenditure
of about two full-time equivalents. We are pressing ahead with features as requested by current
clients, and are keeping abreast of developments in language facilities (C++2011, GCC, Clang)
and third-party software (ROOT, etc.) to improve continuously the performance of the art suite.
In addition, we are working with several experiments to leverage art in online event building
and triggering applications and are working to leverage multi- and many-core technologies in
multiple ways and at several layers of the application architecture. Finally, we are planning to
package and release our build system to allow users to avoid having to maintain their own, and
as experiments move towards data taking we will be continuing to improve art’s performance
and add new features as requested by its users.

Acknowledgments
This work was supported in part by the U.S. Department of Energy, Office of Science, HEP,
Scientific Computing.

References
[1] The art home page: https://cdcvs.fnal.gov/redmine/projects/art
[2] Jones C et al. 2007 Proceedings of the Conference on High Energy Physics, Mumbai 2006 ed Banerjee S

(Macmillan India)
[3] The FHiCL home page: https://cdcvs.fnal.gov/redmine/projects/fhicl
[4] The ROOT home page: http://root.cern.ch/
[5] The SQLite home page: http://www.sqlite.org
[6] The Boost home page: http://www.boost.org
[7] The UPS and UPD home page: http://www.fnal.gov/docs/products/ups/
[8] The cetbuildtools home page: https://cdcvs.fnal.gov/redmine/projects/cetbuildtools
[9] The CMake home page: http://www.cmake.org

[10] Amundson J 2001 Computing in High Energy and Nuclear Physics (CHEP 2000): Proceedings. (Computer
Physics Communications vol 140) ed Mazzucato M and Michelotto M pp 731–732

[11] The scons home page: http://www.scons.org/
[12] Biery K, Green C, Kowalkowski J, Paterno M and Rechenmacher R 2012 Conference Record of the 18th IEEE

Realtime Conference, Berkeley 2012 (IEEE)
[13] Fischler M, Green C, Kowalkowski J, Norman A, Paterno M and Rechenmacher R 2013 Conference on

Computing in High Energy Physics, New York 2012 Journal of Physics Conference Series

https://cdcvs.fnal.gov/redmine/projects/art
https://cdcvs.fnal.gov/redmine/projects/fhicl
http://root.cern.ch/
http://www.sqlite.org
http://www.boost.org
http://www.fnal.gov/docs/products/ups/
https://cdcvs.fnal.gov/redmine/projects/cetbuildtools
http://www.cmake.org
http://www.scons.org/

